kleinvieh_2
This Challenge was covered in nullcon CTF 2025, this is a writeup.
Before I start I liked this challenge because it's a nice coppersmith exercise, ensuring proper understanding of the technique.
Handouts
from Crypto.PublicKey import RSA
from Crypto.Util.number import bytes_to_long, long_to_bytes, inverse
import math
# Utility functions
def chunks(l : list, n : int):
"""Yield successive n-sized chunks from l."""
for i in range(0, len(l), n):
yield l[i:i + n]
# Encryption Methods
def encrypt1(message : bytes, key):
return pow(bytes_to_long(message), key.e, key.n)
def encrypt2(message : bytes, key):
r = 6882340053480090463606763880215995523230790077054797279541
48955984833460337936950913921276804334830417982234720038650432
72978049851415599561893741257560419681569060516183575560934138
10921455481533129431196963983261449026392268314712005423371052
82064399184931676924592908530791494346900227871404063095592748
76429602825553057727865668046378265513942121930242289966766533
92778247184219018318170431595521322520169452263706772780674245
06514993298100924479619565269428391036310378044733517453768164
25265593111120208943269707894718448626786594313865983615593934
31347384089724269793291585060272806532093184794138952597743198
48662706808171929571545923310500352950348748809789292920278241
36201527896331548177702899734448017201096029400209857898946908
92940225901348239139368695489071252944474774307390967674740264
01347928008150737871869441842515706902681140123776591020038755
23464218469985651732600457439392216291883939633654162021229687
08326595761950104668967012490038085535608952398604541628467596
35434691728716499056221797005696650174933343585361153344017021
74782738919340566707333344356965956756224740628328245128415514
97807379047609899109445504993166551283948992292847965847871986
89342431338201610314893908441661953172106881929330452489260
return pow(bytes_to_long(message) * r, key.e, key.n)
def encrypt3(message : bytes, key):
bytelength = int(math.floor(math.log2(key.n))) // 8
msg = message + b'\x00' * (bytelength - len(message))
return pow(bytes_to_long(msg), key.e, key.n)
def encrypt4(message : bytes, key):
bytelength = int(math.floor(math.log2(key.n))) // 8
msg = message * (bytelength // len(message))
return pow(bytes_to_long(msg), key.e, key.n)
def encrypt5(message : bytes, key):
bytelength = int(math.floor(math.log2(key.n))) // 8
msg = b'\x42' * (bytelength - len(message)) + message
return pow(bytes_to_long(msg), key.e, key.n)
# Actual code
flag = open('flag.txt','r').read()
messages = [x for x in chunks(flag.encode(), len(flag) // 5 + 1)]
key = RSA.generate(4096, e = 3)
key_file = open('pubkey.pem','wb')
key_file.write(key.public_key().export_key())
key_file.close()
encryptors = [encrypt1,encrypt2,encrypt3,encrypt4,encrypt5]
for i in range(5):
print(encryptors[i](messages[i], key))
220063927409019701680780388734859413263649938528559880958114989945319210396443096153070875125175228115415476201776095239222264863
521405777679638898956934268538900625825553438750301296652588113926908675649695287473044872094704614120486323959657990026640254596060659622526156708812669359650586620385290808935734592790788255073585330621151468871219769656595135843333814407503403584485725875093573131958504623569333490646639116961719078216840229603919536018487825851994866357917761987217050792416697381377048912395473353778387941958191907824408107449076068401916848269614839157102521989010679392116485801486351905021880108912590420172605418475794616003449288680484874497236175444664128438401914724753429360434711903099273327857734995750524336685921743399501618966233467673179877216701974657036419446491274854437281396070824372634560507303755215464570159167837973755757084277460889038540426254099700613477619367190997235567982845416706558020882785247647017658533190054489579620395565959077232929730085201031313238724372408560517067025821200011117585158799293570307490792480672057216647059928346781983773928742745961020992758462787355967282442061725370293489410415806016306004266400903317110818168429756442671778827765363252714782616931406456862197207387559816797319132734318242504254436838880072071853192476696183220292931118231156006566093505435792459195491243680582
270666484654665630744901461996006692323963839982688652821336211084979467239347411813160298980515940583603861222174521984995420008548684262439808167328926021870579303960012771121601180529687766238396064375729105115543248938593316359682370849163035376370382430086321848989469101241917690539277074390985259902303859203469942292526312785642432913613936993258827179590899881832319079212987637373648192635781867448864854757206430089991579140087742146982306295873762255307312524837239897502872553828380739799963200435212855355849421115331904398013024635259514540481471626803307520164323612306097337438109957993918779265436327033558060626053354750562352860044802675727693412211125966360236444057953485024215560142475510160722114624532935356913983972915673608523025209720167213909179022327299978019112977846926119199262414918029479523990318896183663433071251579236571042002734675157891234966022932698905198698241706452025453847010887618278823570050783989170662300961633292513523806788091889082274722372602239592372048577727269817482906420208931626412130427401917267155522492175168008656904232528370893411707370782832090829602128710489070166301148107529844470225377087526762510454613609000260941022095648201987928579356978933393880920171979201
653824340069025689137734254884130538700629136163559226740194794484993327658776187767570065320577134162743283784425272380809589160993088925874733196055173409287931015748252064633449072261545303183579447460502965342804624603405929157397131141984984644568357653302213965819415468460642952197339991556281367534783709497954301841184449070203282829556818406681886900718807834059676277878423047814575995317125009067646248518224341963179051812872833920966444865854397107596362642091691676816880789051432546280982801936460897107739053704289586862815777802365195344200436339914632247470287475059508482642321374344266084746769130713777040613388188063244264539412036380560226898399218628361640805872727932488302521211097971713325651815102241321497845489911517697687601337373561866169629605144418239966598946278151568343055898100847891792937851579379932984962575775149818916217268297467279875725571404166944999117855879952146915514369003878816227211205583465391314024099614444033724650197415698616726563650695337089763944873372957911180655004798934831152909017151923470147174567931032793367193038245769647005250292165097213630935925441110568790329108402080201984414111112552177466252777781418725448757243067372449888316330317213717511659267093522
358008688390962979576377899144327321078101097951911268175317488500603502519487932330612462905624620597194558963905078036617959827652774950608159539755872698070336695988156123259549872787213397592148258199055613243895883287122890753360508292871837174063088420693224462093920149982044282287843545879889673811146267351528090047294284591799007589644031290908451176760853222636619363811207185693725681140126798792027873548626157363148637874670590965485611082128311321694683523699469128409485949494113757646949983087406842230923148769118322570130431421259760535420603207584288801345366412235455743468488327636151425392848303200702882860489019370153190810988494600882544600108525238483037309140333051358221984674540701977879624246387893765464282113949391789532777484259814371861241414118348867987309273292578129887971446610687731851915056696448523460974558006120340055071716623978233935275849865817975522109696101884471525506261697387468489779620579480299246665603825623773259263912587161909414417437045900004826755951647391749631385635652448151832357232824962202646901774457696625192040117636828038808343932086478692164048901540300465526784540912169577834838256728624868904132298644241575543460006379361856217382572895303794378838795856964
-----BEGIN PUBLIC KEY-----
MIICIDANBgkqhkiG9w0BAQEFAAOCAg0AMIICCAKCAgEAq0qupn0dQPB2KBxkqKbH
qVdlQVInAL+PVtOIqiPfAKuomeiAPFqSxYnVszx8OX7esMulhF/JXERl17Glc7nr
1f4g5TqCRBdLjn7L5UFQfnTDgs0H0eEEXkDo6ujFrP7SCCjwm4u0YQUE14nIFDk2
eLNj7UHXNXvsTLhdJ6cahmMQ0UpcNLvJ2Utq+mPnxHQ4t8WfAe9LeMGSwyHvN6aW
33crJlWIA7q+USLxqQjfOVX2/nGMh/hUZiWkIWrUu5DrbN187s1UuFp/XMsgfTFM
gAFwe8yzwOS5NBc97H4hBechDSCIpUwYd07pkmPEon7V9sUuQasM84UqgzvSQBTF
vP8uKlzZpnoMIVFQJ1iPOUOsf6RYEhw2rgywIKgWILDUutcrBhMm/sZyYR1IqiYc
QBUaJ9jeCQ8pJk5GtTb2B/MDDlazW37iQmPopUGuaRAkWRVpSENC04/3pa57g0R3
jKffVevsNNOPcdVveZ9CNUJ36ckCHMkVjhtwTj3ChhCJkq0EJsmFZcSMe5dWtUEs
6tZm/OXkyCCIkJW2+9bv6fDxAuGtY6VKHKDYeFS1nfufA8fI7L022O++D9nkLnBX
bbi8dinhS9SfTS9GqR5mbEm5NvGT0bG74YbYO4Oy1GPThJOtMXVuNh1qevzDgKKF
PQlPTql78u4Zhw+T2ukQPGsCAQM=
-----END PUBLIC KEY-----
Analysis & Solver
So generally speaking, our plaintext is segmented into 5 different chunks, each chunk is encrypted using one of the encryptors sequentially, we're given the output of each chunk, and the public key used for encryption.
flag = open('flag.txt','r').read()
messages = [x for x in chunks(flag.encode(), len(flag) // 5 + 1)]
key = RSA.generate(4096, e = 3)
We know that e = 3 and N is 4096 bits long so 512 bytes.
encrypt1
This function encrypts the first chunk of the flag with the public key.
def encrypt1(message : bytes, key):
return pow(bytes_to_long(message), key.e, key.n)
from Crypto.Util.number import *
from Crypto.PublicKey import RSA
from gmpy2 import iroot
from sage.all import *
key = RSA.import_key(open('kleinvieh_2/pubkey.pem').read())
cts = list(map(int,open('kleinvieh_2/output').read().strip().split('\n')))
pts = b''
pt = iroot(cts[0],key.e)[0]
pts += long_to_bytes(pt)
encrypt2
This function multiplies a big number r
with the plaintext chunk then encrypts it with the public key.
def encrypt2(message : bytes, key):
r = 688234005348009046360676388021599552323079007705479727954148955984833460337936950913921276804334830417982234720038650432729780498514155995618937412575604196815690605161835755609341381092145548153312943119696398326144902639226831471200542337105282064399184931676924592908530791494346900227871404063095592748764296028255530577278656680463782655139421219302422899667665339277824718421901831817043159552132252016945226370677278067424506514993298100924479619565269428391036310378044733517453768164252655931111202089432697078947184486267865943138659836155939343134738408972426979329158506027280653209318479413895259774319848662706808171929571545923310500352950348748809789292920278241362015278963315481777028997344480172010960294002098578989469089294022590134823913936869548907125294447477430739096767474026401347928008150737871869441842515706902681140123776591020038755234642184699856517326004574393922162918839396336541620212296870832659576195010466896701249003808553560895239860454162846759635434691728716499056221797005696650174933343585361153344017021747827389193405667073333443569659567562247406283282451284155149780737904760989910944550499316655128394899229284796584787198689342431338201610314893908441661953172106881929330452489260
return pow(bytes_to_long(message) * r, key.e, key.n)
Coppersmith's Method
So, (with e=3, roughly if
even after reduction), then one might set up a polynomial equation:
r = 688234005348009046360676388021599552323079007705479727954148955984833460337936950913921276804334830417982234720038650432729780498514155995618937412575604196815690605161835755609341381092145548153312943119696398326144902639226831471200542337105282064399184931676924592908530791494346900227871404063095592748764296028255530577278656680463782655139421219302422899667665339277824718421901831817043159552132252016945226370677278067424506514993298100924479619565269428391036310378044733517453768164252655931111202089432697078947184486267865943138659836155939343134738408972426979329158506027280653209318479413895259774319848662706808171929571545923310500352950348748809789292920278241362015278963315481777028997344480172010960294002098578989469089294022590134823913936869548907125294447477430739096767474026401347928008150737871869441842515706902681140123776591020038755234642184699856517326004574393922162918839396336541620212296870832659576195010466896701249003808553560895239860454162846759635434691728716499056221797005696650174933343585361153344017021747827389193405667073333443569659567562247406283282451284155149780737904760989910944550499316655128394899229284796584787198689342431338201610314893908441661953172106881929330452489260
c = cts[1]
n = key.n
R = r ** 3
PR = PolynomialRing(Zmod(n), 'x')
x = PR.gen()
f = PR(R * x ** 3 - c)
f = f.monic()
pt = int(f.small_roots(X = 2 ** 1024, beta = 0.5)[0])
pts += long_to_bytes(pt)
encrypt3
In this case the message is padded with null bytes for the 493 bytes (equalizing the padded plaintext bitlength with Ns bitlength)
def encrypt3(message : bytes, key):
bytelength = int(math.floor(math.log2(key.n))) // 8
msg = message + b'\x00' * (bytelength - len(message))
return pow(bytes_to_long(msg), key.e, key.n)
bytelength = int(math.floor(math.log2(key.n))) // 8
message_len = 18
c = cts[2]
n = key.n
R = (2 ** ((bytelength - message_len) * 8)) ** 3
PR = PolynomialRing(Zmod(n), 'x')
x = PR.gen()
f = PR(R * x ** 3 - c)
f = f.monic()
pt = int(f.small_roots(X=2 ** 1024, beta = 0.5)[0])
pts += long_to_bytes(pt)[:-1]
encrypt4
This function pads the message with copies of itself until its bitlength is as long or longer than the bitlength of N.
def encrypt4(message : bytes, key):
bytelength = int(math.floor(math.log2(key.n))) // 8
msg = message * (bytelength // len(message))
return pow(bytes_to_long(msg), key.e, key.n)
Representing the Repeated Message as an Integer
given that the length of our message (L) = 18
Concatenating bytes is equivalent to βshiftingβ and adding. In our case, the integer corresponding to the repeated message is
where:
Its closedβform is
That way we could write our polynomial in the form:
c = cts[3]
n = key.n
r = pow(256, 18, n)
num = (pow(r, 28, n) - 1) % n
denom = (r - 1) % n
denom_inv = inverse_mod(denom, n)
S_mod_n = (num * denom_inv) % n
S_cubed = pow(S_mod_n, 3, n)
inv_S_cubed = inverse_mod(S_cubed, n)
a = (c * inv_S_cubed) % n
PR = PolynomialRing(Zmod(n), 'x', implementation='NTL')
x = PR.gen()
f = PR(x ** 3 - a)
pt = int(f.small_roots(X = 2 ** (2 ** 18), beta = 0.5)[0])
pts += long_to_bytes(pt)
encrypt5
This encryption pads "B" onto the most siginificant bits of the plaintext until its full bitlength has less than 144 bits difference from the bitlength of N
def encrypt5(message : bytes, key):
bytelength = int(math.floor(math.log2(key.n))) // 8
msg = b'\x42' * (bytelength - len(message)) + message
return pow(bytes_to_long(msg), key.e, key.n)
so k = 511 - 18 = 493 bytes
Representing the Padded Message as an Integer:
Think of the padded message as a number in base 256. The left part is all the constant byte \x42
, and the right part is the actual message. This number can be expressed as:
where:
M is the integer representation of the original 18-byte message.
S represents the contribution of the repeated
\x42
bytes.Since each
\x42
corresponds to the number 0x42, and there are k=493 of them, concatenated in base 256, we have:
Its closed-form is:
That way we could write our polynomial in the form:
and solve for 0.
c = cts[4]
n = key.n
num = (pow(256, 493 , n) - 1) % n
denom = 255 % n
denom_inv = inverse_mod(denom, n)
S = (0x42 * num * denom_inv) % n
A = (S * pow(256, 18, n)) % n
PR = PolynomialRing(Zmod(n), 'x', implementation='NTL')
x = PR.gen()
f = PR((x + A )**3 - c)
pt = int(f.small_roots(X=2**144, beta=1, epsilon = 0.05)[0])
pts += long_to_bytes(pt)
print(pts)
ENO{s0m3_0f_th35e_me1hod5_4ctua1ly_h4d_th3_sam3_1de3_th4t_i5_why_1t_i5_ju5t_1_ch4ll3nge}
Last updated